Wednesday, January 28, 2009


Introduction: What Is Biodiesel?

The major components of vegetable oils and animal fats are triacylglycerols (TAG; often also called triglycerides). Chemically, TAG are esters of fatty acids (FA) with glycerol (1,2,3-propanetriol; glycerol is often also called glycerine).The TAG of vegetable oils and animal fats typically contain several different FA. Thus, different FA can be attached to one glycerol backbone. The different FA that are contained in the TAG comprise the FA profile (or FA composition) of the vegetable oil or animal fat. Because different FA have different physical and chemical properties, the FA profile is probably the most important parameter influencing the corresponding properties of a vegetable oil or animal fat.

To obtain biodiesel, the vegetable oil or animal fat is subjected to a chemical reaction termed transesterification. In that reaction, the vegetable oil or animal fat is reacted in the presence of a catalyst (usually a base) with an alcohol (usually methanol) to give the corresponding alkyl esters (or for methanol, the methyl esters) of the FA mixture that is found in the parent vegetable oil or animal fat. Figure 1 depicts the transesterification reaction.

Biodiesel can be produced from a great variety of feedstocks. These feedstocks include most common vegetable oils (e.g., soybean, cottonseed, palm, peanut, rapeseed/canola, sunflower, safflower, coconut) and animal fats (usually tallow) as well as waste oils (e.g., used frying oils). The choice of feedstock depends largely on geography. Depending on the origin and quality of the feedstock, changes to the production process may be necessary.

Biodiesel is miscible with petrodiesel in all ratios. In many countries, this has led to the use of blends of biodiesel with petrodiesel instead of neat biodiesel. It is important to note that these blends with petrodiesel are not biodiesel. Often blends with petrodiesel are denoted by acronyms such as B20, which indicates a blend of 20% biodiesel with petrodiesel. Of course, the ntransesterified vegetable oils and animal fats should also not be called “biodiesel.”

Methanol is used as the alcohol for producing biodiesel because it is the least expensive alcohol, although other alcohols such as ethanol or i s o-propanol may yield a biodiesel fuel with better fuel properties. Often the resulting products are also called fatty acid methyl esters (FAME) instead of biodiesel. Although other alcohols can by definition yield biodiesel, many now existing standards are designed in such a fashion that only methyl esters can be used as biodiesel if the standards are observed correctly.

Fig. 1. The transesterification reaction. R is a mixture of various fatty acid chains. The alcohol used for producing biodiesel is usually methanol (R′ = CH3).

Biodiesel has several distinct advantages compared with petrodiesel in addition to being fully competitive with petrodiesel in most technical aspects:

  • Derivation from a renewable domestic resource, thus reducing dependence on and preserving petroleum.
  • Biodegradability.
  • Reduction of most exhaust emissions (with the exception of nitrogen oxides, NOx).
  • Higher flash point, leading to safer handling and storage.
  • Excellent lubricity, a fact that is steadily gaining importance with the advent of low-sulfur petrodiesel fuels, which have greatly reduced lubricity. Adding biodiesel at low levels (1–2%) restores the lubricity.

Some problems associated with biodiesel are its inherent higher price, which in many countries is offset by legislative and regulatory incentives or subsidies in the form of reduced excise taxes, slightly increased NOx exhaust emissions (as mentioned above), stability when exposed to air (oxidative stability), and cold flow properties that are especially relevant in North America. The higher price can also be (partially) offset by the use of less expensive feedstocks, which has sparked interest in materials such as waste oils (e.g., used frying oils).

Why Are Vegetable Oils and Animal Fats Transesterified to Alkyl Esters (Biodiesel)?

The major reason that vegetable oils and animal fats are transesterified to alkyl esters (biodiesel) is that the kinematic viscosity of the biodiesel is much closer to that of petrodiesel. The high viscosity of untransesterified oils and fats leads to operational problems in the diesel engine such as deposits on various engine parts. Although there are engines and burners that can use untransesterified oils, the vast majority of engines require the lower-viscosity fuel.

Why Can Vegetable Oils and Animal Fats and Their Derivatives Be Used as (Alternative) Diesel Fuel?

The fact that vegetable oils, animal fats, and their derivatives such as alkyl esters are suitable as diesel fuel demonstrates that there must be some similarity to petrodiesel fuel or at least to some of its components. The fuel property that best shows this suitability is called the cetane number.

In addition to ignition quality as expressed by the cetane scale, several other properties are important for determining the suitability of biodiesel as a fuel. Heat of combustion, pour point, cloud point, (kinematic) viscosity, oxidative stability, and lubricity are among the most important of these properties.

Share |

0 komentar:

Post a Comment


Twitter Delicious Facebook Digg Stumbleupon Favorites